11 research outputs found

    O-GlcNAc-Specific Antibody CTD110.6 Cross-Reacts with N-GlcNAc2-Modified Proteins Induced under Glucose Deprivation

    Get PDF
    Modification of serine and threonine residues in proteins by O-linked β-N-acetylgulcosamine (O-GlcNAc) glycosylation is a feature of many cellular responses to the nutritional state and to stress. O-GlcNAc modification is reversibly regulated by O-linked β-N-acetylgulcosamine transferase (OGT) and β-D-N-acetylgulcosaminase (O-GlcNAcase). O-GlcNAc modification of proteins is dependent on the concentration of uridine 5′-diphospho-N-acetylgulcosamine (UDP-GlcNAc), which is a substrate of OGT and is synthesized via the hexosamine biosynthetic pathway. Immunoblot analysis using the O-GlcNAc-specific antibody CTD110.6 has indicated that glucose deprivation increases protein O-GlcNAcylation in some cancer cells. The mechanism of this paradoxical phenomenon has remained unclear. Here we show that the increased glycosylation induced by glucose deprivation and detected by CTD110.6 antibodies is actually modification by N-GlcNAc2, rather than by O-GlcNAc. We found that this induced glycosylation was not regulated by OGT and O-GlcNAcase, unlike typical O-GlcNAcylation, and it was inhibited by treatment with tunicamycin, an N-glycosylation inhibitor. Proteomics analysis showed that proteins modified by this induced glycosylation were N-GlcNAc2-modified glycoproteins. Furthermore, CTD110.6 antibodies reacted with N-GlcNAc2-modified glycoproteins produced by a yeast strain with a ts-mutant of ALG1 that could not add a mannose residue to dolichol-PP-GlcNAc2. Our results demonstrated that N-GlcNAc2-modified glycoproteins were induced under glucose deprivation and that they cross-reacted with the O-GlcNAc-specific antibody CTD110.6. We therefore propose that the glycosylation status of proteins previously classified as O-GlcNAc-modified proteins according to their reactivity with CTD110.6 antibodies must be re-examined. We also suggest that the repression of mature N-linked glycoproteins due to increased levels of N-GlcNAc2-modifed proteins is a newly recognized pathway for effective use of sugar under stress and deprivation conditions. Further research is needed to clarify the physiological and pathological roles of N-GlcNAc2-modifed proteins

    The Princeton Protein Orthology Database (P-POD): A Comparative Genomics Analysis Tool for Biologists

    Get PDF
    Many biological databases that provide comparative genomics information and tools are now available on the internet. While certainly quite useful, to our knowledge none of the existing databases combine results from multiple comparative genomics methods with manually curated information from the literature. Here we describe the Princeton Protein Orthology Database (P-POD, http://ortholog.princeton.edu), a user-friendly database system that allows users to find and visualize the phylogenetic relationships among predicted orthologs (based on the OrthoMCL method) to a query gene from any of eight eukaryotic organisms, and to see the orthologs in a wider evolutionary context (based on the Jaccard clustering method). In addition to the phylogenetic information, the database contains experimental results manually collected from the literature that can be compared to the computational analyses, as well as links to relevant human disease and gene information via the OMIM, model organism, and sequence databases. Our aim is for the P-POD resource to be extremely useful to typical experimental biologists wanting to learn more about the evolutionary context of their favorite genes. P-POD is based on the commonly used Generic Model Organism Database (GMOD) schema and can be downloaded in its entirety for installation on one's own system. Thus, bioinformaticians and software developers may also find P-POD useful because they can use the P-POD database infrastructure when developing their own comparative genomics resources and database tools

    RFT1-CDG: Deafness as a novel feature of congenital disorders of glycosylation

    Full text link
    Congenital disorders of glycosylation (CDG) are genetic diseases due to defects in the synthesis of glycans and in the attachment of glycans to lipids and proteins. Actually, some 42 CDG are known including defects in protein N-glycosylation, in protein O-glycosylation, in lipid glycosylation, and in multiple and other glycosylation pathways. Most CDG are multisystem diseases and a large number of signs and symptoms have already been reported in CDG. An exception to this is deafness. This symptom has not been observed as a consistent feature in CDG. In 2008, a novel defect was identified in protein N-glycosylation, namely in RFT1. This is a defect in the assembly of N-glycans. RFT1 is involved in the transfer of Man(5)GlcNAc(2)-PP-Dol from the cytoplasmic to the luminal side of the endoplasmic reticulum. According to the novel nomenclature (non-italicized gene symbol followed by -CDG) this defect is named RFT1-CDG. Recently, three other patients with RFT1-CDG have been reported and here we report two novel patients. Remarkably, all six patients with RFT1-CDG show sensorineural deafness as part of a severe neurological syndrome. We conclude that RFT1-CDG is the first 'deafness-CDG'. CDG should be included in the work-up of congenital, particularly syndromic, hearing loss

    Role of an ER stress response element in regulating the bidirectional promoter of the mouse <it>CRELD2 </it>- <it>ALG12 </it>gene pair

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, we identified <it>cysteine-rich with EGF-like domains 2 </it>(<it>CRELD2</it>) as a novel endoplasmic reticulum (ER) stress-inducible gene and characterized its transcriptional regulation by ATF6 under ER stress conditions. Interestingly, the <it>CRELD2 </it>and <it>asparagine-linked glycosylation 12 homolog </it>(<it>ALG12</it>) genes are arranged as a bidirectional (head-to-head) gene pair and are separated by less than 400 bp. In this study, we characterized the transcriptional regulation of the mouse <it>CRELD2 </it>and <it>ALG12 </it>genes that is mediated by a common bidirectional promoter.</p> <p>Results</p> <p>This short intergenic region contains an ER stress response element (ERSE) sequence and is well conserved among the human, rat and mouse genomes. Microarray analysis revealed that <it>CRELD2 </it>and <it>ALG12 </it>mRNAs were induced in Neuro2a cells by treatment with thapsigargin (Tg), an ER stress inducer, in a time-dependent manner. Other ER stress inducers, tunicamycin and brefeldin A, also increased the expression of these two mRNAs in Neuro2a cells. We then tested for the possible involvement of the ERSE motif and other regulatory sites of the intergenic region in the transcriptional regulation of the mouse <it>CRELD2 </it>and <it>ALG12 </it>genes by using variants of the bidirectional reporter construct. With regards to the promoter activities of the <it>CRELD2</it>-<it>ALG12 </it>gene pair, the entire intergenic region hardly responded to Tg, whereas the <it>CRELD2 </it>promoter constructs of the proximal region containing the ERSE motif showed a marked responsiveness to Tg. The same ERSE motif of <it>ALG12 </it>gene in the opposite direction was less responsive to Tg. The direction and the distance of this motif from each transcriptional start site, however, has no impact on the responsiveness of either gene to Tg treatment. Additionally, we found three putative sequences in the intergenic region that antagonize the ERSE-mediated transcriptional activation.</p> <p>Conclusions</p> <p>These results show that the mouse <it>CRELD2 </it>and <it>ALG12 </it>genes are arranged as a unique bidirectional gene pair and that they may be regulated by the combined interactions between ATF6 and multiple other transcriptional factors. Our studies provide new insights into the complex transcriptional regulation of bidirectional gene pairs under pathophysiological conditions.</p

    Liver involvement in congenital disorders of glycosylation (CDG). A systematic review of the literature

    No full text
    Congenital disorders of glycosylation (CDG) are a rapidly growing family of genetic diseases caused by defects in glycosylation. Nearly 100 CDG types are known so far. Patients present a great phenotypic diversity ranging from poly- to mono-organ/system involvement and from very mild to extremely severe presentation. In this literature review, we summarize the liver involvement reported in CDG patients. Although liver involvement is present in only a minority of the reported CDG types (22 %), it can be debilitating or even life-threatening. Sixteen of the patients we collated here developed cirrhosis, 10 had liver failure. We distinguish two main groups: on the one hand, the CDG types with predominant or isolated liver involvement including MPI-CDG, TMEM199-CDG, CCDC115-CDG, and ATP6AP1-CDG, and on the other hand, the CDG types associated with liver disease but not as a striking, unique or predominant feature, including PMM2-CDG, ALG1-CDG, ALG3-CDG, ALG6-CDG, ALG8-CDG, ALG9-CDG, PGM1-CDG, and COG-CDG. This review aims to facilitate CDG patient identification and to understand CDG liver involvement, hopefully leading to earlier diagnosis, and better management and treatment

    The congenital disorders of glycosylation: a multifaceted group of syndromes.

    No full text
    The congenital disorders of glycosylation (CDG) are a rapidly expanding group of metabolic syndromes with a wide symptomatology and severity. They all stem from deficient N-glycosylation of proteins. To date the group contains 18 different subtypes: 12 of Type I (disrupted synthesis of the lipid-linked oligosaccharide precursor) and 6 of Type II (malfunctioning trimming/processing of the protein-bound oligosaccharide). Main features of CDG involve psychomotor retardation; ataxia; seizures; retinopathy; liver fibrosis; coagulopathies; failure to thrive; dysmorphic features, including inverted nipples and subcutaneous fat pads; and strabismus. No treatment currently is available for the vast majority of these syndromes (CDG-Ib and CDG-IIc are exceptions), even though attempts to synthesize drugs for the most common subtype, CDG-Ia, have been made. In this review we will discuss the individual syndromes, with focus on their neuronal involvement, available and possible treatments, and future directions
    corecore